PHYSICAL REVIEW E VOLUME 60, NUMBER 1 JULY 1999

Extended self-similarity and dissipation range dynamics of three-dimensional turbulence
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We carry out a self-consistent calculation of the structure functions in the dissipation range using the
Navier-Stokes equation. Combining these results with the known structures in the inertial range, we actually
propose crossover functions for the structure functions that take one smoothly from the inertial to the dissipa-
tion regime. These crossover functions are shown to exhibit extended self-similarity properties consistent with
experimental findingd.S1063-651X99)12207-4
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I. INTRODUCTION
<|U(k)|2n>:f (V(Xg) - V(Xg + T )V(Xp) - V(Xo 1)
The inertial-range multiscaling of the velocity structure
functions in fully developed homogeneous, isotropic turbu- n dx; )
lence has been investigated extensiVidiy-8]. By compari- V(%) O+ T T —drelri).
son the asymptotic behaviors of the structure functions in the =1L
far dissipation range have been less well studied. In this parne exponent,, is n/3 in the Kolmogorov, 1941K41) [1]
per we report a self-consistent, approximate, analytical Calfheory. In genera,, differs from n/3 and one of the best

culation of the behaviors of structure functions in the dissi-gstimates of the deviatiod¢,,, due to She and LevequsL)
pation range. By using accepted scaling forms for the[lo] is "

structure functions in the inertial range, we propose

asymptotic forms for them in the dissipation range. We also n 2\
propose forms for the crossover from the inertial- to 6fn=Ln—nB=— g +2/1-{3] | ©)
dissipation-range asymptotic behaviors and demonstrate how
extended self-similarityfESS can be understood. Here we investigate the behavior 8, in the dissipation
range. Our principal results are summarized below, Dor
Il. CALCULATION AND RESULTS =3 and fork>K:
We work with the forced three-dimensional Navier- Sy(k)~k e K,
Stokes(NS) equation(3DNS
( ) q ( B S4(k)~k_5€_2k/K, (4)

0i(K)+ vkPui(k) = =M j (k) 2 vj(P)vi(k—p)+fi(k.b), Son(k)~k e ™MK, n=3
P
(1) whereé,=2—D (in this section we us® for dimension of

spacg and K=0(ky). By studying the correction to the
where My;; =[k;P; (k) +k;P;;(k)]/2, the transverse projec- above result in powers dk/k, we propose(in D=3) the
tor P;;= 5ij—kikj/k2, and the external forcg is stochastic, fqllo_vvmg crossover fu_nctlon(that crosses over from the
has zero mean, anc(fi(k,t)fj(k’,t’)>=D(k)Pij(k) S(k dissipation- to the inertial-range foym
+k")8(t—t"). D(k) sharply decays to zero beyond the in- Co1m
tegral scale I ~'). [For what follows we do not need the Sz(k)NE 1+, K
specific functional form ofD(k)]. This stochastic force k I
maintains the energy balance in the inertial range. The en-

. Lo — where @, is a number 0fO(1), and
ergy input per unit time €) at long wavelengths cascades

(2+p)/m
e KK (5

through different length scales because of the nonlinear term, 1 KM\ (1+£4)/m
and for k>kg, is dissipated by molecular viscosity); s4(k)~E 1+ap 1 e KK
whereky= (e/v®)Y In the inertial rangd. ~*<k<kgq -
m /m (6)
K {2n
Sy ~k~(éant3n), () Son(K)~k ™3 1+ ary 1 ) e K  n=3.
where the structure functionS,,(k) =connected part of Note that, in the regioik/k>1 (i.e., the inertial range

{lv(k)|?"). We can defing|v(k)|*") as the Fourier trans- this form reduces to Eq2) and, in the regioiK/k<1 (i.e.,
form of a real-space correlation function in the following the dissipation rangethis reduces to Eq4). The constants
way: a,, are nonuniversal and will be shown to be almost indepen-
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dent of n. An approximate analytic evaluation of gives 0.003
m=1. A more accurate numerical evaluationrofyields m 0.002 b
<1. The explicit crossover forms that we have written down )
help us understand the idea of extended self-similarity intro- =
duced by Benzet al.[11]. Our approach is an alternative to “»Bc 0.001
that of Segelet al. [12]. If we expand Eq.6), for m=1, &
about the inertial-range form E¢R), we note that :\c
=
SZH(k)~k(52"+3”)(1—[n—ﬁ5), 7) \(E\El
a, K b
2107°F
so the simple power-law form will break down when
N log-log :
LIS ®) e 102 107 10° 10'
Nan—{on k/K

Various studied13,14,14 suggest that, whe®,,, devi-
ates from its inertial-range behavior, it first increases beyond

—(Lont+3Nn) i
the k™tezn ) line and then, at eve_n _Iarger v_aIL_IeS _bf tain this plot we have used E¢6) and the SL formula fot,,. We
[~O(kg)], it falls off sharply whenk is in the dissipation  paye choseny,=a;=1/9, which is consistent with the constraint

range. This initial flattening _of the energy spectrum is kKNnoWngp, o, . The curves fon=2 andn=4 have been shifted along the
as the “bottleneck effect” in the literaturfl3,14,16. We  yertical axis by arbitrary scale factors to compare them clearly. The

incorporate this effect in our expression 8y, by demand-  humps are a clear manifestation of the bottleneck effect.
ing that the coefficient of the terkifK in Eq. (7) be positive.

FIG. 1. Logglog; plot of S, /k™ 203" versusk/K. To ob-

This leads to a constraint am,, namely, The first term in the braces in E(L1) leads to a straight
line in the log-log ESS plots and its slope is related to the
{on>Nay. ©) inertial-range multiscaling exponents. The second term in the

. large square brackets in E(L1) causes deviation from this
Note that, as we go further away from the inertial rangegyrajght line. Note first that the two exponential factors com-
(K/k=1), the exponential factor dominates and causes thgjne to yield a term expf u, -K/K) that decays much more
rapid fall of the structure functiors,,. For the structure weakly than expfnkiK) (if we use the K41l values,,
function S, this condition becomes =2n/3, the two exponential factors cancel exactly to yield
1). From Eq.(11) we see thaj, m=n—m({zn+3n)/({om
+3m) and, if we use the SL formula, we can easily verify
that for n>m, n—-m=pu,,=0, whence exp{nkK)
<exp(—unmk/K), for k/K>1. (This follows from the prop-
erty that{,, increases monotonically with, but with a slope
that decreases as increases and hencé&/,,/5¢,,>n/m.)

1 <2+¢,. (10

(Note, however, that ifa,<0, the bottleneck hump goes
away. Our choicex,>0 is purely phenomenological in na-
ture) We notice that{,,—ne,, increases witm if we con-
stra_linan<_ 2/9. This follows from th_e fact that,, is a mono- [Clearly u, ,=0 and, as i—m) increases wittm fixed (as
tonically increasing, convex function efand {,,,— 2n/9 as in typical ESS plots ., . increases, leading to increasingly
n—o. With these bounds om,, a few phenomenological giong deviations from the inertial-range lihén a conven-
results follow, which can be checked analytically also. tional log-log plot ofS,,(k) versusk, the exponential factor
(1) As nincreases, the structure functioBig,(k) deviate  hat modifies the power-law dependence in the inertial range
from the inertial-range power-law behavior at smaller andyapaves as exp(nk/K) for k/K>1. Hence the apparent in-

smaller values ok/K [17]. ) _ ertial range is extended in ESS plots. Also the variation of
(2) The position of the “bottleneck” hump shifts towards [1+ @ *k/K M3+ 3) &2n which causes weak deviation from

smi[aIIer vaIuesfofr/lelafs]:n mcreastels. Conseéqtjently thle um'fpower-law behavior is muted by the denominatas a,’'s
LT}?(E](EXEPI’;]GH 'a dah(') hOCCUTri at lower afr; ower val uesl %have been assumed to have the same sign and shown to be
or higher and highen. These two effects are clearly 4yt independent of late. These points are shown

demonstrated in Fig. 1. PR : :
. clearly in Fig. 2, which shows the following.
We now turn to ESS. From E6) it is clear that (1) In ESS plots the effect of the exponential damping
factor sets in at higher value &fK than in log-log plots of

~ ({2n+3n)/({om+3m) . . .
San(K)~{Sam(k)}'e2n an S,,, versusk plots. This can be seen by a comparison of Fig.
1 and Fig. 2. Figure 1 shows that the inertial-range region in
x| @~ NKKaM[({2n+3n)/(Lom+3m)]k/K a log-log plot ofS,,, versusk/K extends tck/K=10"1. Fig-

ure 2 shows that the damping factd¢k) in the ESS form
1 ; [Eq. (11)] is significant fork/K>1; thus an ESS plot should
% [1+ay, "k/IK]?2n yield an extension of the apparent inertial range by nearly
[1+ar;lk/K]§2m[(§2n+3n)/(§2m+3m)] one order of magnitude.
(2) Note also that the log-log ESS plot & versusS,
~{Sym(k)}ant 3/ (Lom ¥ 3M (k) ], (11)  deviates from inertial-range behavior at a lower valu&/dt




PRE 60 EXTENDED SELF-SIMILARITY AND DISSIPATION ... 573

06 |
05 =ese for Sgvs Sp

= for S4vs Sp

04 }

03 scaling occurs at smaller kK

As |m-n| increases, deviation from

.
.
Y
.
.
.
.
.
.
.

)
.
.
.
.
.

.
.

02 T2
kK

FIG. 2. Logglog;, plot of the damping factod(k) versusk/K,
when the damping factor is the expli¢itdependent coefficient of
S,m(k) (b2n*+3m/(&2m+3m) in gyr Eq.(11). We have chosen,=a;

=1/9, consistent with the constraint e, .

than itsS, versusS, analogue.

We first note that the correlation functions in the dissipa-
tion range fall off extremely fadqt18] beyond the character-
istic scaleky; consequently there is no divergence in the
self-energies and correlation functions fork,. Thus the
viscosity coefficientr does not acquire any scale-dependen

10 .

dw
f ESZ(k,w) =S,(k,t=0)=k%f(k/ky). (13

The form S,(k,)=k%2vk?f(k/ky)/(w?+ v’k*) that we
have used here, is tantamount to considering the linearized
effective equatior(for the dissipation range

vi(K)+ vk?v;(k)=f;(k,t)
when the external noise has a variance

(fi(k,O)f; (k" t")) = Ak?2vk?f (k/Kq)
X Pyj(k)8(k+k')a(t—t").

Though there is no external forcing in the dissipation range,
the indirect forcing through the nonlinear term has been re-
placed by the noise term.

Note that in Eq(12) we have use#, as the lower cutoff
of the integral. Strictly speaking, given the form of the non-
linear term in the 3DNSE, all modes(k) interact with each
other. However, sincéa) we are interested in the regime
k/K>1, the far dissipation range here aflgj the cascade
picture suggests locality of interactionskrspace, we ignore
the interactions of the far dissipation range modes with those
belowk,. (Compare, e.g., interactions only between nearest-
neighbor and next-nearest-neighbor shells in the Gledzer-

'Okhitani-Yamada GOY shell mod€17].)

renormalization. One-loop self-consistent perturbation theory To compare the two sides of E(L2), we make use of a

yields|[5,6]

Sz(k,w)=|G(k,w)|2k2f

xa(k,p,k—p)Sy(|k—pl,0—w")Sy(p,0").

(See Fig. 3.

On the right-hand side the tree-level ter{k)|G|? has
been dropped because the forcing amplitiigk) -0 for
k>L"! The angular factor a(k,p,k—p)=3(1—xyz
—2y?7?%); when the trio k,p,k—p) forms a triangle and
X,Y,z are the direction cosines of the angles oppositie, (o
andk—p, respectively. The inverse of the response functio
G l=—iw+vk?® and the correlation functiorS,(k,w)

=k%f (ki/kq) vk?/ (0?+ v?k*), such that

x Dk)
—_— = X - +
S (k.w) G G

d®p do’

pk—pl=kg(27)P 27

saddle-point approximation in evaluating the integral on the
right-hand side of Eq(12). In this approximation it turns out
that f (k/ky) =e #¥ks, whereK =k4/B. That this is a self-
consistent solution can be checked by working with the ex-
ponential factors on the right-hand side of E#j2) in terms

of a shifted wave numbeag=(k/2—p) as follows:

@~ Bplkga—Blk—pl/kg = o= B(Iki2—q| +|ki2+al)/kyg
_ e*ﬂ([k2/4+q2*k<q] V24 [k214+ g2+ k- 6] YA kg
= o~ Blkgg— BKIkg[q7sir? 6/k?+ O(q*/k*) + - - 1)
(14

whereq and @ are the integration variables. Now the saddle-

I,Point approximation amounts to setting the factor multiply-
I

g e ¥4 equal to unity, the maximum value of the factor.
The exponential factor on the left-hand side of B).is thus
reproduced and power counting of the rest yields

5,=—(D-2). (15)

To check the correctness of this self-consistent solution
we numerically integratetbverp) the right-hand side of Eq.
(12) for D=3, with lower cutoffky, and using the form
S,(k,w) =bg[ vk?/(w?+ v’k*) e ¥ki/k. At zero external
frequency @w=0), we have called the resulting integral
I4(k) (see below. The comparison of l4(k) with

FIG. 3. A graphical representation of our one-loop, self- bo(1/k)e ¥k is shown in Fig. 4a) (we choseK =Kkg in our

consistent approximation Eq12). D(k) is the amplitude of the

numerical work. The agreement is good férky=20 (i.e.,

noise variance denotes the renormalized response function, andk>kg4). Note that, for a given value d;, self-consistency

S, the renormalized correlation function.

fixes the value ob,.
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FIG. 4. Plots of(a) log;{14(k)] and(b) log;J1.(k)] versusk/ky .

Circles show data from our numerical evaluation of these integrals

I4(k) and 1.(k). Solid lines denote(@ (by/k)e ¥ ¢ and (b)
(b /K) (kg /K)Y4e™ k4, respectively.

To study the crossover behavior from the dissipation

range to the inertial range, we need to include the first cor
rection to the largek/K behavior described above. We do
this by assuming that the correction 8(k) can be ex-
panded in powers ofK/k)™ and thus, inD=3,

Sz(k)=%[1+b1(K/k)m]e_k’K. (16)

wherem is an unknown power to be determined later. We
substitute this form oB,(k) into the right-hand side of Eq.
(12) (here S,(k,w)~[vk?/(w?+ 1v’k*)]S,(k)) and retain
terms up to linear order ib;. After integrating ovew', the
right-hand side of Eq(12), considered at zero external fre-
quency (v=0), turns out to be proportional {@ee Appen-
dix A)

)

3 e (p+lk=p|)/K
(p?+|k—p[*)plk—pl

X[1+by(K/p)™+by(K/k—p[)™]

P
a(k,p,k—p)
Jk=pl=kg(27)3

=l4(k)+byl(k), 17

where | 4(k), defined earlier, does not depend bp, the
b,-dependent part is denoted oyl (k), and subscriptsl
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FIG. 5. The diagram contributing t6,,(k) in the dissipation
regime. All the internal lines in the diagram represent correlation
functionsS,(p;t;j,t;41) and all external lines represent propagators
G(k;t,t;), etc. The respective momentum arguments of@and
S,’s are indicated on the diagram.

tween the numerically evaluatég(k) (circles and our ana-
lytic approximation for it withm=1/4. So our earlier ap-
proximation overestimateas. For this value ofm the match
is the closest. Note that the agreement is goodkfég=7.
All our earlier arguments demonstrating the ESS properties
of S, hold good as long am>0. Note that the fact thdt,
fits better than 4 up to relatively smalk/ky does not mean
that the correction term improves the fit. In Fig.l4,andl
are separately compared to the respective terms inHg.
because, as mentioned earlier,cannot be determined from
our formalism. In the numerical integration lp{ k), we have
used the same values for the paramekgrandb, which we
obtained from the self-consistency requirement k).

It should be noted that, in the far dissipation range that we
are considering here, the single-loop—self-consistency ap-
proximation is sufficient. We have checked that the contri-
butions from two-loop diagrams are at most of the same

and c stand for dominant and correction, respectively. Theorder as the single-loop diagram. So their inclusion just

self-consistency{of Egs. (16) and (17)] requires thatl
=bo(1k)e XK andl = bo(1/k) (K/k)Me XK, for any value
of b;. So far the value ofm has not been determined.

We first estimaten in an approximate way. The require-
ment thatl .(k) be finite leads tan<2. If we write m=2
— €, we can evaluate the integril to the leading pol¢19]

changes the amplitude 8(k). This statement is true for the
evaluation ofS,, (n>1) also, which we carry out below.
Out of the various possible arrangements of khand —k
external legs on a one-loop diagram, we evaluate the most
relevant ondshown in Fig. 3. Contributions from other pos-
sible one-loop diagrams are exponentially smaller and hence

in €. 1. can be evaluated by using a saddle-point techniquetheir contributions are negligible. The contribution from Fig.

the dominant contribution comes fropa=k. The final result
must be of the forni1+b;(K/p)™] for self-consistency; so,
at the level of approximation just described, we fime=1.
Thus, fork>ky, S, (1/Kk)(1+b;K/k)e XK and, fork<kgq
(the inertial rangge S,k ("¢, The simplest interpolating
form between the two behaviors is E&).

Our value form above is approximate, because the inte-
gral in Eq.(17) involves a lower cut-ofky, which we did
not consider in our analysis. So whkfk, is not very large,
we expect deviation from the valum=1. This led us to
determinem numerically by evaluating the correction inte-
gral 1.(k) and demanding that it be consistent with
bo(1/k) (kq/k)™e™ WK, Figure 4b) shows a comparison be-

5is
San(k,t) =([v(k,)v(—k,1)]")
~k2“£mdt1- = J;dthJ %G(k;t,tl)
XG(—k:t,t,)G(K:t,ts) - - - G(—K:t,ton)
X S(p,[ti—t2])Sa(|k—pl,[ta—ts])
X Sy(Ps|tz—ta]) - - - Sp(|k—pl,[tzn—ta]). (18)

As S,(k,t)~k~(P~2)eKKe-It¥® \ve note that the inte-
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gral of Eq.(18) will be dominated by the low momentum k\~

pole atp=k. Using a pole approximation for evaluating the E(k)= E(kp)a(k_) e Kk,
integral, a momentum count produces the result that P
Son(k,t) ok 3Ne WK (see Appendix B This establishes
Eq. (4). Within our formalism we cannot show that E@)
holds for odd moments also, but we assume it does for th

iallf zﬁ’f nmoineomgli;gl'ia'\lt%vr\: \;\rﬁn?ostﬁnth;t sE((i)lir:mpilr:efhin far concerned the issue is far from settled because three studies
o SZ - o P ’ E} ) [15,16,2Q quote three differenet values, namely3.3, 1,
dissipation range. But this is not of the kinfl,- S;") which  anq _5/3  respectively. Our value for this exponentsL,
has been reported in direct numerical simulaiDNS) stud-  which is closest to that of Sirovickt al. Interestingly their
ies[9]. This disparity indicates that higher-order correctionsanalysis starts im space and gets, for smal] S,(r)~r2,
to our approximation might be important. _ _ which is the same as ours. We beliegecannot be deter-
We now study the first deviation &,, from its form in  mined unambiguously by only data fitting, because, in the far

Eq.(4). To do so, we introduce the first deviation®f,(k,t)  dissipation range, the exponential factor dominates strongly.
in Eq. (18). The integral in Eq(18) is already dominated by

the low momentum pole; hence the additional correction part

This is similar to our Eq(5) but the exponeng in their Eq.
84) differs from ours; but our exponent follows from a self-
consistent treatment. As far as the value of this expopfdst

is also dominated by this pole. There areontributions of ACKNOWLEDGMENTS
equal strength from each of tf&(p) and S,(|k—p|) and We would like to thank R. Panditof 1ISc Bangalore,
consequently fok>K, India) for discussions and useful comments, P. Pradhan for
help in drawing the Feynman diagrams, and C8ilia) for
Synock 3N 1+ b, (K/K)Me KK, (19) support. A.S. would like to thank NSERQ@Canada for

support.

whereb,,«nb;. Since the quantity,, in Eqg. (6) is roughly

proprtional ton (neglecting weak deviations frorn23), we

consequently infer that in the interpolation formula of Eq. Below we show the detailed derivation of Ed.4). We

(6), the constant,, is independent ofi, to a leading approxi- determined the unknown exponemtof the leading correc-

mation of the present analysis. Thus the main results, Eqsion to thek>K form of S,(k) numerically by demanding

(4)—(6), are obtained. self-consistency of the following equati¢aur Eq.(12)]:
Now we look at the real-space structure functiBs(r)

APPENDIX A: DERIVATION OF EQ. (17) FROM EQ. (12

=([v(x+r)—Vv(x)]?); this is the inverse Fourier transform d®p do’

of 2[u2s(k) — S,(k)] (whereu3/2 is the mean energyForr S,(k,w)=|G|%k? f 5 5-akpk=p)
in the far dissipation rang&,(r) will be determined princi- (2) T

pally by ourk>ky form of S,(k) [i.e., ~(1/k)e ¥X]. This X Sy(|k—plo— ' )Sy(p o).

yields S,(r)~c,r2+O(r?). Herec, is a function ofv ande.
This form of Sy(r) is consistent with the result of Sirovich ore explicitly the right-hand side
et al.[20]. The added advantage of duspace calculation is

its ability to predict the asymptotic forms of higher-order

D ’
structure function§S,,(k), n>1]. =|G|2k2J d”p do’
(2m)P 2w
I1l. DISCUSSION AND CONCLUSIONS ar?p?|k—p|2e~ (PrIk=ph/k 1
In summary, we have shown that by considering the (024 12pY([0—o'12+1?k—p|*) PIk=p|’

Navier-Stokes equation and carrying out a self-consistent
treatment of thé&-space structure functions we can establish Now we integrate ovew’ and setw=0. Below we sup-
their asymptotic forms in the dissipation range. By comput-press thew’-independent part of the integral and show the
ing the first correction to these asymptotic forms and in adresult ofw’ integration on the explicitlyn’-dependent part.
dition using well-known results about the inertial range, weThe poles lie aw’ = *ivp? andw’ = w*ivp?. Integrating
can construct explicit crossover functions for the structureover the upper half plane we get
functions(crossover fromk>ky to k<<kg). Also the present
theory gives a description of the crossover behavior that is 5 ( 1
consistent with ESS. -

As far as the bottleneck effect is concerned we should *(27)
point out that the effect is built by hand into our interpolation
forms Eqgs.(5) and(6) by imposing constraints oa,,; it is T 1 )
not a consequence of our theory. We refer the reader to Refs.  |k—p|2([ w+i v|k—p|?]?+ v?p%)
[13,14,14 for other work on the bottleneck effect. She and

pA([w—ivp®]®+ 7| k—p|*)

Jackson16] have suggested an empirical curve-fitting for- 1 1 1
mula[Eq. (4) in their pape}. For the far dissipation range - — for w=0.
k>ky it reads 20%(k=pl[*~pH \p* |k—pl?
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After the above expression,

simplifying
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inserting time convolutions(which come from the correlation func-

|G(k,w=0)|?=1/1?k*, and then putting together all the fac- tions S,) appearing in the integral and we get

tors, the integral reduces to

J

which is precisely theO(b?) term in Eq.(17), barring a
factor of 1k?. This factor gets cancelled with the left-hand
side, hence

In our numerics we have used=1.

bg

21%K2 (p2+|k—p|2)p|k—p|(’

D e (prlk=p)/K

(ijD a(k,p.k—p)

—k/K

k

by (€
K,w=0)=—

vk?

1
Sy ):W[SZ(I()]' (A2)

APPENDIX B: CALCULATION OF S,,

We start from Eq(18) here(also see Fig. b
Son(k,t) =([v(k,D)v(—k,1)]")

D
~Kk2n t dt;- - t dt d—pG(k'tt)
w» 1 w 2n (27T)D ERERN

t t > >
~f dt;- - - f dtzne*(t*tﬂk e (t—tp)k

Ke -k o= (t-ty)k’g—(t-tpk?

X e_(t_tz)kze_|t1_t2|k2e_‘t3_t4|k2. - (83)

This is a product of double integrals

t t n
N(f dtlf dtze(ttl)kze(ttz)kze“lt2|k2) .

(B4)

In thet,>t, sector the integral reduces to
t t t
o] J

Collecting all thek-dependent factors together, this leads

_ 2
e 2tk

n
d tleztlkz)

n
! dt,e” 2tk262t2k2> —
o 2k?
n

1
4k*

to

XG(—k;t,t2)G(k;t,t3) - - - G(—K;t,to)
X Sy(p,|ti—t2)) So([k—pl.[t2—ts])
X Sy(p,|ts—ta]) - - - Sp([k—pl,[ton—ta]).
Given the causal nature @(k;t,t;), we havet>t; (the
internal dummy indicesin the above expression. We substi-
tute  Sy(k,t)~k’2e WKe Itk and  G(k:t,t")

~e WKe=(=!)¢ in the above expression. Here we have
takenv=1. We carry out the momentum integral

J dSp;efn(mlkfpl)/K_
([k=plp)"

For n=3 this integral has equally strong divergencegat
=0 and p=k. We avoid the divergences by assuming a
lower cutoff (=K) for the integral. So the dominant contri-
bution fork>K is

(B1)

7nk/Ki

- (82

~e
The following multiple time integral results from Eq.
(18):

t

f_

t
dty - - f dtyne (K

e~ (t-Ka=(t-tk? o= (t-t)k?g=p7ty— 1y

X e*|k*P|2|t2*t3|e* Plts—tal. . . e*\k*pmtzn*tﬂ_

Because of the divergences mentioned above we evaluate

this time integral ap=k. This approximation breaks up the

2n,—n —nk/K
—nkiK __ e

Son(k,t)~ (B5)

e

k4n k3n

APPENDIX C: CONTRIBUTION FROM THE ONE-LOOP
DIAGRAM FOR S,(k)

The momentum integral that results from the one-loop
diagram forS,(k) is
d3p

k4j—
p2lk—pl|?

This integral does not have any infrared divergence. That
becomes clear after performing the angular integral aver
So we do not require a lower cutoff for this integral and
hence allow interaction among ali,|k—p| modes.(This
statement is true for one-loop integrals 8, , for n<3.) In

the above integral, we pull out the exponential factor using a
saddle-point approximation, then scale é&ufrom the inte-
gral and the rest of the integral in scaled variapl& is a
finite number. The dominant contribution of the above inte-
gral is

e~ (2p+2lk—pl)/K_ (C1)

1
=k e 2, (C2
The time integral over internal time variablegt,, ... t4

produces (K?)*. So the net contribution of the one-loop
diagram is

—2k/IK

Sy(k)~ (C3

k5
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