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Extended self-similarity and dissipation range dynamics of three-dimensional turbulence
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We carry out a self-consistent calculation of the structure functions in the dissipation range using the
Navier-Stokes equation. Combining these results with the known structures in the inertial range, we actually
propose crossover functions for the structure functions that take one smoothly from the inertial to the dissipa-
tion regime. These crossover functions are shown to exhibit extended self-similarity properties consistent with
experimental findings.@S1063-651X~99!12207-4#

PACS number~s!: 47.27.Gs, 05.45.2a, 05.70.Jk, 47.27.Eq
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I. INTRODUCTION

The inertial-range multiscaling of the velocity structu
functions in fully developed homogeneous, isotropic turb
lence has been investigated extensively@1–8#. By compari-
son the asymptotic behaviors of the structure functions in
far dissipation range have been less well studied. In this
per we report a self-consistent, approximate, analytical
culation of the behaviors of structure functions in the dis
pation range. By using accepted scaling forms for
structure functions in the inertial range, we propo
asymptotic forms for them in the dissipation range. We a
propose forms for the crossover from the inertial-
dissipation-range asymptotic behaviors and demonstrate
extended self-similarity~ESS! can be understood.

II. CALCULATION AND RESULTS

We work with the forced three-dimensional Navie
Stokes~NS! equation~3DNSE!

v̇ i~k!1nk2v i~k!52 iM i j l ~k!(
p

v j~p!v l~k2p!1 f i~k,t !,

~1!

where Mi jl 5@kj Pil (k)1kl Pi j (k)#/2, the transverse projec
tor Pi j 5d i j 2kikj /k2, and the external forcef i is stochastic,
has zero mean, and̂ f i(k,t)f j (k8,t8)&5D(k)Pi j (k)d(k
1k8)d(t2t8). D(k) sharply decays to zero beyond the i
tegral scale (L21). @For what follows we do not need th
specific functional form ofD(k)#. This stochastic force
maintains the energy balance in the inertial range. The
ergy input per unit time (ē) at long wavelengths cascade
through different length scales because of the nonlinear te
and for k.kd , is dissipated by molecular viscosity (n),
wherekd5( ē/n3)1/4. In the inertial rangeL21!k!kd

S2n;k2(z2n13n), ~2!

where the structure functionsS2n(k)5connected part of
^uv(k)u2n&. We can definê uv(k)u2n& as the Fourier trans
form of a real-space correlation function in the followin
way:
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^uv~k!u2n&5E ^v~x1!•v~x11r 1!v~x2!•v~x21r 2!

•••v~xn!•v~xn1r n!&)
j 51

n S dxj

L3
dr je

ik•r j D .

The exponentzn is n/3 in the Kolmogorov, 1941~K41! @1#
theory. In generalzn differs from n/3 and one of the bes
estimates of the deviationdzn , due to She and Leveque~SL!
@10#, is

dzn5zn2n/352
2n

9
12F12S 2

3D n/3G . ~3!

Here we investigate the behavior ofS2n in the dissipation
range. Our principal results are summarized below, forD
53 and fork@K:

S2~k!;k21e2k/K,

S4~k!;k25e22k/K, ~4!

S2n~k!;k23ne2nk/K, n>3

whered2522D ~in this section we useD for dimension of
space! and K5O(kd). By studying the correction to the
above result in powers ofK/k, we propose~in D53) the
following crossover function~that crosses over from th
dissipation- to the inertial-range form!:

S2~k!;
1

k S 11a1FK

k GmD (21z2)/m

e2k/K, ~5!

wherea1 is a number ofO(1), and

S4~k!;
1

k5 S 11a2FK

k GmD (11z4)/m

e22k/K,

~6!

S2n~k!;k23nS 11anFK

k GmD z2n /m

e2nk/K, n>3.

Note that, in the regionK/k@1 ~i.e., the inertial range!,
this form reduces to Eq.~2! and, in the regionK/k!1 ~i.e.,
the dissipation range!, this reduces to Eq.~4!. The constants
an are nonuniversal and will be shown to be almost indep
571 ©1999 The American Physical Society
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572 PRE 60ANIRBAN SAIN AND J. K. BHATTACHARJEE
dent of n. An approximate analytic evaluation ofm gives
m51. A more accurate numerical evaluation ofm yields m
,1. The explicit crossover forms that we have written do
help us understand the idea of extended self-similarity in
duced by Benziet al. @11#. Our approach is an alternative t
that of Segelet al. @12#. If we expand Eq.~6!, for m51,
about the inertial-range form Eq.~2!, we note that

S2n~k!;k2(z2n13n)S 12Fn2
z2n

an
G k

K D , ~7!

so the simple power-law form will break down when

k;
an

nan2z2n
K. ~8!

Various studies@13,14,16# suggest that, whenS2n devi-
ates from its inertial-range behavior, it first increases bey
the k2(z2n13n) line and then, at even larger values ofk
@;O(kd)#, it falls off sharply whenk is in the dissipation
range. This initial flattening of the energy spectrum is kno
as the ‘‘bottleneck effect’’ in the literature@13,14,16#. We
incorporate this effect in our expression forS2n by demand-
ing that the coefficient of the termk/K in Eq. ~7! be positive.
This leads to a constraint onan , namely,

z2n.nan . ~9!

Note that, as we go further away from the inertial ran
(K/k&1), the exponential factor dominates and causes
rapid fall of the structure functionS2n . For the structure
function S2, this condition becomes

a1,21z2 . ~10!

~Note, however, that ifan,0, the bottleneck hump goe
away. Our choicean.0 is purely phenomenological in na
ture.! We notice thatz2n2nan increases withn if we con-
strainan,2/9. This follows from the fact thatz2n is a mono-
tonically increasing, convex function ofn andz2n→2n/9 as
n→`. With these bounds onan , a few phenomenologica
results follow, which can be checked analytically also.

~1! As n increases, the structure functionsS2n(k) deviate
from the inertial-range power-law behavior at smaller a
smaller values ofk/K @17#.

~2! The position of the ‘‘bottleneck’’ hump shifts toward
smaller values ofk/K asn increases. Consequently the ul
mate exponential falloff occurs at lower and lower values
k/K for higher and highern. These two effects are clearl
demonstrated in Fig. 1.

We now turn to ESS. From Eq.~6! it is clear that

S2n~k!;$S2m~k!%~z2n13n!/~z2m13m!

3Fe2nk/Kem[( z2n13n)/(z2m13m)]k/K

3
@11an

21k/K#z2n

@11am
21k/K#z2m[( z2n13n)/(z2m13m)]G

;$S2m~k!%~z2n13n!/~z2m13m!@d~k!#. ~11!
-

d

n

e
e

d

f

The first term in the braces in Eq.~11! leads to a straight
line in the log-log ESS plots and its slope is related to
inertial-range multiscaling exponents. The second term in
large square brackets in Eq.~11! causes deviation from this
straight line. Note first that the two exponential factors co
bine to yield a term exp(2mn,mk/K) that decays much more
weakly than exp(2nk/K) ~if we use the K41 valuez2n
52n/3, the two exponential factors cancel exactly to yie
1). From Eq.~11! we see thatmn,m5n2m(z2n13n)/(z2m
13m) and, if we use the SL formula, we can easily veri
that for n.m, n2m>mn,m>0, whence exp(2nk/K)
!exp(2mn,mk/K), for k/K@1. ~This follows from the prop-
erty thatzn increases monotonically withn, but with a slope
that decreases asn increases and hencedzn /dzm.n/m.!
@Clearly mn,n50 and, as (n2m) increases withm fixed ~as
in typical ESS plots!, mn,m increases, leading to increasing
strong deviations from the inertial-range line.# In a conven-
tional log-log plot ofS2n(k) versusk, the exponential factor
that modifies the power-law dependence in the inertial ra
behaves as exp(2nk/K) for k/K@1. Hence the apparent in
ertial range is extended in ESS plots. Also the variation
@11an

21k/K#n(31d2)1z2n which causes weak deviation from
power-law behavior is muted by the denominator~as an’s
have been assumed to have the same sign and shown
almost independent ofn later!. These points are show
clearly in Fig. 2, which shows the following.

~1! In ESS plots the effect of the exponential dampi
factor sets in at higher value ofk/K than in log-log plots of
S2n versusk plots. This can be seen by a comparison of F
1 and Fig. 2. Figure 1 shows that the inertial-range region
a log-log plot ofS2n versusk/K extends tok/K.1021. Fig-
ure 2 shows that the damping factord(k) in the ESS form
@Eq. ~11!# is significant fork/K.1; thus an ESS plot should
yield an extension of the apparent inertial range by nea
one order of magnitude.

~2! Note also that the log-log ESS plot ofS6 versusS2
deviates from inertial-range behavior at a lower value ofk/K

FIG. 1. Log10-log10 plot of S2n /k2(z2n13n) versusk/K. To ob-
tain this plot we have used Eq.~6! and the SL formula forz2n . We
have chosenan5a151/9, which is consistent with the constrain
on an . The curves forn52 andn54 have been shifted along th
vertical axis by arbitrary scale factors to compare them clearly. T
humps are a clear manifestation of the bottleneck effect.
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PRE 60 573EXTENDED SELF-SIMILARITY AND DISSIPATION . . .
than itsS4 versusS2 analogue.
We first note that the correlation functions in the dissip

tion range fall off extremely fast@18# beyond the character
istic scalekd ; consequently there is no divergence in t
self-energies and correlation functions fork.kd . Thus the
viscosity coefficientn does not acquire any scale-depend
renormalization. One-loop self-consistent perturbation the
yields @5,6#

S2~k,v!5uG~k,v!u2k2E
p,uk2pu>kd

dDp

~2p!D

dv8

2p

3a~k,p,k2p!S2~ uk2pu,v2v8!S2~p,v8!.

~12!

~See Fig. 3.!
On the right-hand side the tree-level termD(k)uGu2 has

been dropped because the forcing amplitudeD(k)→0 for
k.L21. The angular factor a(k,p,k2p)5 1

2 (12xyz
22y2z2); when the trio (k,p,k2p) forms a triangle and
x,y,z are the direction cosines of the angles opposite tok,p,
andk2p, respectively. The inverse of the response funct
G2152 iv1nk2 and the correlation functionS2(k,v)
5kd2f (k/kd)nk2/(v21n2k4), such that

FIG. 2. Log10-log10 plot of the damping factord(k) versusk/K,
when the damping factor is the explicitk-dependent coefficient o
S2m(k)(z2n13n)/(z2m13m) in our Eq. ~11!. We have chosenan5a1

51/9, consistent with the constraint onan .

FIG. 3. A graphical representation of our one-loop, se
consistent approximation Eq.~12!. D(k) is the amplitude of the
noise variance,G denotes the renormalized response function, a
S2 the renormalized correlation function.
-

t
ry

n

E dw

2p
S2~k,v!5S2~k,t50!5kd2f ~k/kd!. ~13!

The form S2(k,v)5kd2nk2f (k/kd)/(v21n2k4) that we
have used here, is tantamount to considering the linear
effective equation~for the dissipation range!

v̇ i~k!1nk2v i~k!5 f i~k,t !

when the external noise has a variance

^f i~k,t !f j~k8,t8!&5Akd2nk2f ~k/kd!

3Pi j ~k!d~k1k8!d~ t2t8!.

Though there is no external forcing in the dissipation ran
the indirect forcing through the nonlinear term has been
placed by the noise term.

Note that in Eq.~12! we have usedkd as the lower cutoff
of the integral. Strictly speaking, given the form of the no
linear term in the 3DNSE, all modesv i(k) interact with each
other. However, since~a! we are interested in the regim
k/K@1, the far dissipation range here and~b! the cascade
picture suggests locality of interactions ink space, we ignore
the interactions of the far dissipation range modes with th
belowkd . ~Compare, e.g., interactions only between neare
neighbor and next-nearest-neighbor shells in the Gled
Okhitani-Yamada GOY shell model@17#.!

To compare the two sides of Eq.~12!, we make use of a
saddle-point approximation in evaluating the integral on
right-hand side of Eq.~12!. In this approximation it turns ou
that f (k/kd)5e2bk/kd, whereK5kd /b. That this is a self-
consistent solution can be checked by working with the
ponential factors on the right-hand side of Eq.~12! in terms
of a shifted wave numberq[(k/22p) as follows:

e2bp/kde2buk2pu/kd5e2b(uk/22qu1uk/21qu)/kd

5e2b([k2/41q22k•q] 1/21[k2/41q21k•q] 1/2)/kd

5e2bk/kde2bk/kd[q2sin2u/k21O(q4/k4)1•••] ,

~14!

whereq andu are the integration variables. Now the sadd
point approximation amounts to setting the factor multip
ing e2bk/kd equal to unity, the maximum value of the facto
The exponential factor on the left-hand side of Eq.~9! is thus
reproduced and power counting of the rest yields

d252~D22!. ~15!

To check the correctness of this self-consistent solut
we numerically integrated~overp) the right-hand side of Eq
~12! for D53, with lower cutoff kd , and using the form
S2(k,v)5b0@nk2/(v21n2k4)#e2k/kd/k. At zero external
frequency (v50), we have called the resulting integr
I d(k) ~see below!. The comparison of I d(k) with
b0(1/k)e2k/kd is shown in Fig. 4~a! ~we choseK5kd in our
numerical work!. The agreement is good fork/kd>20 ~i.e.,
k@kd). Note that, for a given value ofkd , self-consistency
fixes the value ofb0.

d
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574 PRE 60ANIRBAN SAIN AND J. K. BHATTACHARJEE
To study the crossover behavior from the dissipat
range to the inertial range, we need to include the first c
rection to the largek/K behavior described above. We d
this by assuming that the correction toS2(k) can be ex-
panded in powers of (K/k)m and thus, inD53,

S2~k!5
b0

k
@11b1~K/k!m#e2k/K, ~16!

wherem is an unknown power to be determined later. W
substitute this form ofS2(k) into the right-hand side of Eq
~12! „here S2(k,v);@nk2/(v21n2k4)#S2(k)… and retain
terms up to linear order inb1. After integrating overv8, the
right-hand side of Eq.~12!, considered at zero external fre
quency (w50), turns out to be proportional to~see Appen-
dix A!

E
p,uk2pu>kd

d3p

~2p!3
a~k,p,k2p!

e2(p1uk2pu)/K

~p21uk2pu2!puk2pu

3@11b1~K/p!m1b1~K/uk2pu!m#

[I d~k!1b1I c~k!, ~17!

where I d(k), defined earlier, does not depend onb1, the
b1-dependent part is denoted byb1I c(k), and subscriptsd
and c stand for dominant and correction, respectively. T
self-consistency@of Eqs. ~16! and ~17!# requires thatI d
5b0(1/k)e2k/K and I c5b0(1/k)(K/k)me2k/K, for any value
of b1. So far the value ofm has not been determined.

We first estimatem in an approximate way. The require
ment thatI c(k) be finite leads tom,2. If we write m52
2e, we can evaluate the integralI c to the leading pole@19#
in e. I c can be evaluated by using a saddle-point techniq
the dominant contribution comes fromp.k. The final result
must be of the form@11b1(K/p)m# for self-consistency; so
at the level of approximation just described, we findm51.
Thus, fork@kd , S2}(1/k)(11b1K/k)e2k/K and, fork!kd
~the inertial range!, S2}k2(31z2). The simplest interpolating
form between the two behaviors is Eq.~5!.

Our value form above is approximate, because the in
gral in Eq. ~17! involves a lower cut-offkd , which we did
not consider in our analysis. So whenk/kd is not very large,
we expect deviation from the valuem51. This led us to
determinem numerically by evaluating the correction inte
gral I c(k) and demanding that it be consistent wi
b0(1/k)(kd /k)me2k/K. Figure 4~b! shows a comparison be

FIG. 4. Plots of~a! log10@Id(k)# and~b! log10@Ic(k)# versusk/kd .
Circles show data from our numerical evaluation of these integ
I d(k) and I c(k). Solid lines denote~a! (b0 /k)e2k/kd and ~b!
(b0 /k)(kd /k)1/4e2k/kd, respectively.
n
r-

e

e;

-

tween the numerically evaluatedI c(k) ~circles! and our ana-
lytic approximation for it withm51/4. So our earlier ap-
proximation overestimatesm. For this value ofm the match
is the closest. Note that the agreement is good fork/kd>7.
All our earlier arguments demonstrating the ESS proper
of Sn hold good as long asm.0. Note that the fact thatI c
fits better thanI d up to relatively smallk/kd does not mean
that the correction term improves the fit. In Fig. 4,I d and I c
are separately compared to the respective terms in Eq.~16!
because, as mentioned earlier,b1 cannot be determined from
our formalism. In the numerical integration ofI c(k), we have
used the same values for the parameterskd andb0 which we
obtained from the self-consistency requirement ofI d(k).

It should be noted that, in the far dissipation range that
are considering here, the single-loop–self-consistency
proximation is sufficient. We have checked that the con
butions from two-loop diagrams are at most of the sa
order as the single-loop diagram. So their inclusion j
changes the amplitude ofS2(k). This statement is true for the
evaluation ofS2n (n.1) also, which we carry out below
Out of the various possible arrangements of thek and 2k
external legs on a one-loop diagram, we evaluate the m
relevant one~shown in Fig. 5!. Contributions from other pos
sible one-loop diagrams are exponentially smaller and he
their contributions are negligible. The contribution from Fi
5 is

S2n~k,t !5^@v~k,t !v~2k,t !#n&

;k2nE
2`

t

dt1•••E
2`

t

dt2nE dDp

~2p!D
G~k;t,t1!

3G~2k;t,t2!G~k;t,t3!•••G~2k;t,t2n!

3S2~p,ut12t2u!S2~ uk2pu,ut22t3u!

3S2~p,ut32t4u!•••S2~ uk2pu,ut2n2t1u!. ~18!

As S2(k,t);k2(D22)e2k/Ke2utunk2
, we note that the inte-

ls

FIG. 5. The diagram contributing toS2n(k) in the dissipation
regime. All the internal lines in the diagram represent correlat
functionsS2(p;t j ,t j 11) and all external lines represent propagato
G(k;t,t j ), etc. The respective momentum arguments of theG and
S2’s are indicated on the diagram.
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PRE 60 575EXTENDED SELF-SIMILARITY AND DISSIPATION . . .
gral of Eq. ~18! will be dominated by the low momentum
pole atp5k. Using a pole approximation for evaluating th
integral, a momentum count produces the result t
S2n(k,t)}k23ne2nk/K ~see Appendix B!. This establishes
Eq. ~4!. Within our formalism we cannot show that Eq.~4!
holds for odd moments also, but we assume it does for
sake of monotonicity. Now we note that Eq.~4! implies Sn

;k22nS2
n , i.e., a deviation from simple scaling in the fa

dissipation range. But this is not of the kind (Sn;S3
an) which

has been reported in direct numerical simulation~DNS! stud-
ies @9#. This disparity indicates that higher-order correctio
to our approximation might be important.

We now study the first deviation ofS2n from its form in
Eq. ~4!. To do so, we introduce the first deviation ofS2n(k,t)
in Eq. ~18!. The integral in Eq.~18! is already dominated by
the low momentum pole; hence the additional correction p
is also dominated by this pole. There aren contributions of
equal strength from each of theS2(p) and S2(uk2pu) and
consequently fork@K,

S2n}k23n@11bn~K/k!m#e2nk/K, ~19!

wherebn}nb1. Since the quantityz2n in Eq. ~6! is roughly
proprtional ton ~neglecting weak deviations from 2n/3), we
consequently infer that in the interpolation formula of E
~6!, the constantan is independent ofn, to a leading approxi-
mation of the present analysis. Thus the main results, E
~4!–~6!, are obtained.

Now we look at the real-space structure functionS2(r )
5^@v(x1r )2v(x)#2&; this is the inverse Fourier transform
of 2@u0

2d(k)2S2(k)# ~whereu0
2/2 is the mean energy!. For r

in the far dissipation range,S2(r ) will be determined princi-
pally by ourk@kd form of S2(k) @i.e., ;(1/k)e2k/K#. This
yieldsS2(r )'c1r 21O(r 4). Herec1 is a function ofn andē.
This form of S2(r ) is consistent with the result of Sirovic
et al. @20#. The added advantage of ourk-space calculation is
its ability to predict the asymptotic forms of higher-ord
structure functions@S2n(k), n.1#.

III. DISCUSSION AND CONCLUSIONS

In summary, we have shown that by considering
Navier-Stokes equation and carrying out a self-consis
treatment of thek-space structure functions we can establ
their asymptotic forms in the dissipation range. By comp
ing the first correction to these asymptotic forms and in
dition using well-known results about the inertial range,
can construct explicit crossover functions for the struct
functions~crossover fromk@kd to k!kd). Also the present
theory gives a description of the crossover behavior tha
consistent with ESS.

As far as the bottleneck effect is concerned we sho
point out that the effect is built by hand into our interpolati
forms Eqs.~5! and ~6! by imposing constraints onan ; it is
not a consequence of our theory. We refer the reader to R
@13,14,16# for other work on the bottleneck effect. She a
Jackson@16# have suggested an empirical curve-fitting fo
mula @Eq. ~4! in their paper#. For the far dissipation rang
k@kd it reads
t

e

s

rt

.

s.

e
nt
h
-
-

e

is

d

fs.

E~k!5E~kp!aS k

kp
D 2b

e2mk/kp.

This is similar to our Eq.~5! but the exponentb in their Eq.
~4! differs from ours; but our exponent follows from a se
consistent treatment. As far as the value of this exponentb is
concerned the issue is far from settled because three stu
@15,16,20# quote three differenet values, namely,23.3, 1,
and 25/3, respectively. Our value for this exponent is21,
which is closest to that of Sirovichet al. Interestingly their
analysis starts inr space and gets, for smallr , S2(r );r 2,
which is the same as ours. We believeb cannot be deter-
mined unambiguously by only data fitting, because, in the
dissipation range, the exponential factor dominates stron
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APPENDIX A: DERIVATION OF EQ. „17… FROM EQ. „12…

Below we show the detailed derivation of Eq.~14!. We
determined the unknown exponentm of the leading correc-
tion to thek@K form of S2(k) numerically by demanding
self-consistency of the following equation@our Eq.~12!#:

S2~k,v!5uGu2k2E dDp

~2p!D

dv8

2p
a~k,p,k2p!

3S2~ uk2pu,v2v8!S2~p,v8!.

More explicitly the right-hand side

5uGu2k2E dDp

~2p!D

dv8

2p

3
an2p2uk2pu2e2(p1uk2pu)/k

~v821n2p4!~@v2v8#21n2uk2pu4!

1

puk2pu
.

Now we integrate overv8 and setv50. Below we sup-
press thev8-independent part of the integral and show t
result ofv8 integration on the explicitlyv8-dependent part.
The poles lie atv856 inp2 andv85v6 inp2. Integrating
over the upper half plane we get

2p i

2in~2p! S 1

p2~@v2 inp2#21n2uk2pu4!

1
1

uk2pu2~@v1 inuk2pu2#21n2p4!
D

5
1

2n3~ uk2pu42p4!
S 1

p2
2

1

uk2pu2D for v50.
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After simplifying the above expression, insertin
uG(k,v50)u251/n2k4, and then putting together all the fac
tors, the integral reduces to

E dDp

~2p!D
a~k,p,k2p!

b0
2

2n3k2

e2(p1uk2pu)/K

~p21uk2pu2!puk2pu
,

~A1!

which is precisely theO(b1
0) term in Eq. ~17!, barring a

factor of 1/k2. This factor gets cancelled with the left-han
side, hence

S2~k,v50!5
b0

nk2 S e2k/K

k D5
1

nk2
@S2~k!#. ~A2!

In our numerics we have usedn51.

APPENDIX B: CALCULATION OF S2n

We start from Eq.~18! here~also see Fig. 5!.

S2n~k,t !5^@v~k,t !v~2k,t !#n&

;k2nE
2`

t

dt1•••E
2`

t

dt2nE dDp

~2p!D
G~k;t,t1!

3G~2k;t,t2!G~k;t,t3!•••G~2k;t,t2n!

3S2~p,ut12t2u!S2~ uk2pu,ut22t3u!

3S2~p,ut32t4u!•••S2~ uk2pu,ut2n2t1u!.

Given the causal nature ofG(k;t,t j ), we havet.t j ~the
internal dummy indices! in the above expression. We subs
tute S2(k,t);kd2e2k/Ke2utuk2

and G(k;t,t8)
;e2k/Ke2(t2t8)k2

in the above expression. Here we ha
takenn51. We carry out the momentum integral

E d3p
1

~ uk2pup!n
e2n(p1uk2pu)/K. ~B1!

For n>3 this integral has equally strong divergences ap
50 and p5k. We avoid the divergences by assuming
lower cutoff (5K) for the integral. So the dominant contr
bution for k@K is

;e2nk/K
1

kn
. ~B2!

The following multiple time integral results from Eq
~18!:

E
2`

t

dt1•••E
2`

t

dt2ne2(t2t1)k2

3e2(t2t2)k2
e2(t2t3)k2

•••e2(t2t2n)k2
e2p2ut12t2u

3e2uk2pu2ut22t3ue2p2ut32t4u
•••e2uk2pu2ut2n2t1u.

Because of the divergences mentioned above we eva
this time integral atp5k. This approximation breaks up th
te

time convolutions~which come from the correlation func
tions S2) appearing in the integral and we get

;E
2`

t

dt1•••E
2`

t

dt2ne2(t2t1)k2
e2(t2t2)k2

3e2(t2t3)k2
•••e2(t2t2n)k2

e2(t2t1)k2

3e2(t2t2)k2
e2ut12t2uk2

e2ut32t4uk2
•••. ~B3!

This is a product ofn double integrals

;S E
2`

t

dt1E
2`

t

dt2e2(t2t1)k2
e2(t2t2)k2

e2ut12t2uk2D n

.

~B4!

In the t1.t2 sector the integral reduces to

S E
2`

t

dt1E
2`

t1
dt2e22tk2

e2t2k2D n

5S e22tk2

2k2 E
2`

t

dt1e2t1k2D n

5S 1

4k4D n

.

Collecting all thek-dependent factors together, this lea
to

S2n~k,t !;
k2nk2n

k4n
e2nk/K;

e2nk/K

k3n
. ~B5!

APPENDIX C: CONTRIBUTION FROM THE ONE-LOOP
DIAGRAM FOR S4„k…

The momentum integral that results from the one-lo
diagram forS4(k) is

k4E d3p

p2uk2pu2
e2(2p12uk2pu)/K. ~C1!

This integral does not have any infrared divergence. T
becomes clear after performing the angular integral oveu.
So we do not require a lower cutoff for this integral an
hence allow interaction among allp,uk2pu modes.~This
statement is true for one-loop integrals forS2n , for n,3.! In
the above integral, we pull out the exponential factor usin
saddle-point approximation, then scale outk from the inte-
gral and the rest of the integral in scaled variablep/k is a
finite number. The dominant contribution of the above in
gral is

.k4
1

k
e22k/K. ~C2!

The time integral over internal time variablest1 ,t2 , . . . ,t4
produces (1/k2)4. So the net contribution of the one-loo
diagram is

S4~k!;
e22k/K

k5
. ~C3!
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